α-Spinasterol: a COX inhibitor and a transient receptor potential vanilloid 1 antagonist presents an antinociceptive effect in clinically relevant models of pain in mice

α-菠菜甾醇:一种 COX 抑制剂和瞬时受体电位香草酸 1 拮抗剂,在小鼠临床相关疼痛模型中表现出抗伤害作用

阅读:4
作者:Indiara Brusco, Camila Camponogara, Fabiano Barbosa Carvalho, Maria Rosa Chitolina Schetinger, Mauro Schneider Oliveira, Gabriela Trevisan, Juliano Ferreira, Sara Marchesan Oliveira

Background and purpose

Postoperative pain is one of the most common manifestations of acute pain and is an important problem faced by patients after surgery. Moreover, neuronal trauma or chemotherapeutic treatment often causes neuropathic pain, which induces disabling and distressing symptoms. At present, treatments of both painful conditions are inadequate. α-Spinasterol, which is well characterized as a transient receptor potential vanilloid 1 antagonist, has anti-inflammatory, antioxidant and antinociceptive effects. Therefore, we investigated its antinociceptive potential on postoperative and neuropathic pain, as well as its effect on COX-1 and COX-2 activities. Experimental approach: Nociceptive responses in a postoperative pain model (surgical incision-induced) or different neuropathic pain models (trauma or chemotherapy-induced) were investigated in mice. Key

Purpose

Postoperative pain is one of the most common manifestations of acute pain and is an important problem faced by patients after surgery. Moreover, neuronal trauma or chemotherapeutic treatment often causes neuropathic pain, which induces disabling and distressing symptoms. At present, treatments of both painful conditions are inadequate. α-Spinasterol, which is well characterized as a transient receptor potential vanilloid 1 antagonist, has anti-inflammatory, antioxidant and antinociceptive effects. Therefore, we investigated its antinociceptive potential on postoperative and neuropathic pain, as well as its effect on COX-1 and COX-2 activities. Experimental approach: Nociceptive responses in a postoperative pain model (surgical incision-induced) or different neuropathic pain models (trauma or chemotherapy-induced) were investigated in mice. Key

Results

Oral administration of α-spinasterol reduced postoperative pain, when given as a pre- (0.5 h before incision) or post-treatment (0.5 h after incision), and reduced cell infiltration in the injured tissue. α-Spinasterol also reduced the mechanical allodynia induced by partial sciatic nerve ligation and the mechanical and cold allodynia induced by paclitaxel. Moreover, α-spinasterol inhibited COX-1 and COX-2 enzyme activities without altering the body temperature of animals. Importantly, α-spinasterol did not alter spontaneous or forced locomotor activity. Furthermore, it did not cause gastric damage or liver and kidney changes, nor did it alter cell viability in the cerebral cortex and spinal cord slices of mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。