All-trans retinoic acid increases ARPE-19 cell apoptosis via activation of reactive oxygen species and endoplasmic reticulum stress pathways

全反式维甲酸通过激活活性氧和内质网应激途径增加ARPE-19细胞凋亡

阅读:7
作者:Juan Wu, Zhen-Ya Gao, Dong-Mei Cui, Hong-Hui Li, Jun-Wen Zeng

Aim

To explore the apoptosis of ARPE-19 cells after the treatment with different doses of all-trans-retinoic acid (ATRA).

Conclusion

ATRA induces the apoptosis of ARPE-19 cells via activated ROS and ERS signaling pathways.

Methods

ARPE-19 cells were used in the in-vitro experiment. Flow cytometry assay was employed to evaluate the level of reactive oxygen species (ROS) and apoptosis. The effects of ATRA (concentrations from 2.5 to 20 µmol/L) on the expression of endoplasmic reticulum stress (ERS) markers in vitro were evaluated by Western blot and real-time quantitative polymerase chain reaction (qRT-PCR) assays. The contribution of ROS and ERS-induced apoptosis in vitro was determined by using N-acetyl-L-cysteine (NAC) and Salubrinal, an antagonist of NAC and ERS, respectively.

Results

Flow cytometry showed that ATRA significantly increased ARPE-19 cell apoptosis and ROS levels in each group (F=86.39, P<0.001; F=116.839, P<0.001). Western blot and qRT-PCR revealed that levels of CHOP and BIP were elevated in a concentration-dependent pattern after the cells were incubated with ATRA (2.5-20 µmol/L). The upregulation of VEGF-A and CHOP induced by ATRA could be inhibited by NAC (antioxidant) and Salubrinal (ERS inhibitor) in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。