Regulation of the endothelial plasminogen activator system by fluvastatin. Role of Rho family proteins, actin polymerisation and p38 MAP kinase

氟伐他汀对内皮纤溶酶原激活剂系统的调节。Rho 家族蛋白、肌动蛋白聚合和 p38 MAP 激酶的作用

阅读:5
作者:Sylvie Dunoyer-Geindre, Richard J Fish, Egbert K O Kruithof

Abstract

Statins are cholesterol-lowering drugs that exert pleiotropic effects which include changes in the plasminogen activation (PA) system of endothelial cells (EC). It was the objective of this study to investigate the signal transduction pathways by which statins increase the expression of tissue-type PA (t-PA) and decrease PA inhibitor type 1 (PAI-1) in human umbilical vein EC. Fluvastatin treatment increased t-PA expression more than 10-fold and reduced PAI-1 expression up to five-fold. This effect was mimicked by geranylgeranyl transferase inhibition. The role of geranylgeranylated small G-proteins of the Rho family was assessed by adenovirus-mediated expression of dominant negative (DN) RhoA, Cdc42 and Rac1 and by siRNA-mediated suppression of these proteins. DN-Cdc42 and DN-Rac1, as well as siRNA for Cdc42, increased t-PA expression, while DN-RhoA and DN-Rac1 decreased PAI-1 expression. Latrunculin B, an inhibitor of actin polymerisation, increased t-PA mRNA and reduced PAI-1 mRNA to the same extent as fluvastatin. Inhibition of p38, as well as p38α or p38β siRNA, reversed the effects of fluvastatin on t-PA expression. Treatment with p38β siRNA partially reversed the effect of fluvastatin on PAI-1, whereas p38α siRNA had no significant effect. Inhibition of jun kinase reduced basal and fluvastatin-induced t-PA expression to the same extent and increased PAI-1. MEK/ERK inhibition had no effect. In human EC, the fluvastatin-induced increase in t-PA is mediated by Cdc42 and, as with t-PA induced by inhibition of actin polymerisation, requires activation of p38MAP kinase. The mechanisms by which fluvastatin treatment reduces PAI-1 are different from those that increase t-PA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。