Maggot chymotrypsin I from Lucilia sericata is resistant to endogenous wound protease inhibitors

丝光绿蝇蛆胰凝乳蛋白酶 I 对内源性伤口蛋白酶抑制剂具有抗性

阅读:10
作者:G Telford, A P Brown, A Kind, J S C English, D I Pritchard

Background

A chymotrypsin found in the secretions of Lucilia sericata and manufactured as a recombinant enzyme degrades chronic wound eschar ex vivo. Objectives: To characterize the inhibition profile of the L. sericata recombinant chymotrypsin I.

Conclusions

The data suggest that the maggot-derived chymotrypsin I is biochemically distinct from human α-chymotrypsin and the lack of inhibition by wound eschar suggests a means by which chymotrypsin I activity survives within the wound to contribute towards debridement during maggot biotherapy.

Methods

Activity of recombinant chymotrypsin I and its sensitivity to endogenous inhibitors were determined enzymatically using the fluorogenic substrate succinyl-alanyl-alanyl-prolyl-phenylalanyl-aminomethyl coumarin.

Results

We report the presence of high concentrations of two endogenous inhibitors, α1-antichymotrypsin and α1-antitrypsin, in wound eschar and a trace of a third, α2-macroglobulin, with the potential to inhibit this debridement process. However, the addition of a soluble and inhibitor-containing extract of chronic wound eschar to chymotrypsin I did not affect activity of the enzyme, neither did the addition of purified native α1-antichymotrypsin or α1-antitrypsin, although chymotrypsin I was inhibited by α2-macroglobulin. Conversely, the mammalian equivalent, α-chymotrypsin, was inhibited by the purified native α1-antichymotrypsin, α1-antitrypsin and α2-macroglobulin and by the soluble extract of wound eschar. Conclusions: The data suggest that the maggot-derived chymotrypsin I is biochemically distinct from human α-chymotrypsin and the lack of inhibition by wound eschar suggests a means by which chymotrypsin I activity survives within the wound to contribute towards debridement during maggot biotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。