Effect of combined chronic predictable and unpredictable stress on depression-like symptoms in mice

慢性可预测和不可预测应激联合作用对小鼠抑郁样症状的影响

阅读:7
作者:Yajun Qiao, Jiubo Zhao, Cen Li, Ming Zhang, Lixin Wei, Xiaoyuan Zhang, Olga Kurskaya, Hongtao Bi, Tingting Gao

Background

Mental stress mainly induces depression, and predictable stress, as well as a constant bombardment of chronic unpredictable micro-stressors, always coexist in daily life. However, the combined effect of predictable and unpredictable stress on depression is still not fully understood.

Conclusions

Combined stress caused significant depression-like behaviors, atrophy, and severe structural damage to the hippocampus in mice via monoamine neurotransmitter, BDNF, HPA axis, neurogenesis, and neurodegenerative, immune, oxidative stress and gut-brain axis action pathways.

Methods

The chronic restraint stress (CRS) is to restrain the mice for 6 h per day for 3 weeks, and the chronic unpredictable mild stress (CUMS) is to stimulate the mice with 7 different stressors for 3 weeks. We evaluated the combined effect of CRS and CUMS on depression-like symptoms using behavioral tests and investigated the action mechanism through analysis of neurotransmitters, brain-derived factors, inflammatory factors, antioxidants, and intestinal microorganisms.

Results

Our data suggested the combined stress of CRS and CUMS caused significant weight loss, food intake reduction, depression-like behaviors-including anhedonia, learned helplessness, and reduction in spontaneous activity-and even atrophy and severe structural damage to the hippocampus in mice. Our pathogenesis study showed that combined stress-induced the reduction of glucocorticoid receptor (GR) levels, loss of oligodendrocytes (NG2 and Olig2 cells), and inhibition of neuron proliferation in the CA1, CA3, and DG regions of the hippocampus, decreased the contents of monoamine neurotransmitters (5-HT and NE) and BDNF in the cerebral cortex, caused hyperactivity of the HPA system, led to immune dysfunction, aggravated oxidative stress, and weakened the capacity of antioxidants in mice. Compared with single stress, combined stress gave rise to a more significant diversity change of the gut microbiota. Conclusions: Combined stress caused significant depression-like behaviors, atrophy, and severe structural damage to the hippocampus in mice via monoamine neurotransmitter, BDNF, HPA axis, neurogenesis, and neurodegenerative, immune, oxidative stress and gut-brain axis action pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。