LncRNA MEG3 promotes cisplatin sensitivity of cervical cancer cells by regulating the miR-21/PTEN axis

LncRNA MEG3通过调控miR-21/PTEN轴促进宫颈癌细胞对顺铂的敏感性

阅读:5
作者:Ying Du, Gang Geng, Chunquan Zhao, Tian Gao, Bin Wei

Background

Cervical cancer (CC) is a common gynecological malignancy worldwide. Some patients perform serious resistance after chemotherapy, and long-stranded non-coding RNA MEG3 is reported to be involved in the regulation of chemoresistance in many solid tumors. However, its involvement in cervical adenocarcinoma has not been reported.

Conclusions

MEG3 performing as ceRNA promotes cisplatin sensitivity in CC cells through the miR-21/PTEN axis.

Methods

Hela cell lines, cisplatin-resistant cell lines (Hela-CR) and nude mice were used in this study. After MEG3 was overexpressed or knocked down in cells by the lentivirus vector, cell growth was detected by the CCK-8 assay, and cell migration was evaluated using Transwell assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the expression of MEG3, miR-21 and PTEN mRNA. Apoptosis was detected by flow cytometry. The targeting relationship between mRNAs was predicted and verified using dual-luciferase reporter gene experiments. Western blot was executed to examine Bax, cleaved-caspase 3, Bcl-2, PTEN and GAPDH expression. Cells were injected into the mice to form xenograft tumors to compare tumorigenesis capacity.

Results

We demonstrated that MEG3 was down-regulated in cervical cancer by analyzing the TCGA database. Moreover, knockdown of MEG3 promoted CC cell proliferation, migration and inhibited the apoptosis. These changes of CC cells were more pronounced under cisplatin treatment. Further studies showed that the MEG3/miR-21/PTEN axis affected cisplatin sensitivity in cervical cancer cells, and these results of recue assay were used to confirm this

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。