Multiomic integration reveals neuronal-extracellular vesicle coordination of gliotic responses in degeneration

多组学整合揭示了退化过程中神经元-细胞外囊泡对神经胶质增生反应的协调

阅读:6
作者:Adrian V Cioanca, Yvette Wooff, Riemke Aggio-Bruce, Rakshanya Sekar, Catherine Dietrich, Riccardo Natoli

Abstract

In the central nervous system (CNS), including in the retina, neuronal-to-glial communication is critical for maintaining tissue homeostasis including signal transmission, transfer of trophic factors, and in the modulation of inflammation. Extracellular vesicle (EV)-mediated transport of molecular messages to regulate these processes has been suggested as a mechanism by which bidirectional communication between neuronal and glial cells can occur. In this work we employed multiomics integration to investigate the role of EV communication pathways from neurons to glial cells within the CNS, using the mouse retina as a readily accessible representative CNS tissue. Further, using a well-established model of degeneration, we aimed to uncover how dysregulation of homeostatic messaging between neurons and glia via EV can result in retinal and neurodegenerative diseases. EV proteomics, glia microRNA (miRNA) Open Array and small RNA sequencing, and retinal single cell sequencing were performed, with datasets integrated and analysed computationally. Results demonstrated that exogenous transfer of neuronal miRNA to glial cells was mediated by EV and occurred as a targeted response during degeneration to modulate gliotic inflammation. Taken together, our results support a model of neuronal-to-glial communication via EV, which could be harnessed for therapeutic targeting to slow the progression of retinal-, and neuro-degenerations of the CNS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。