Natural variations in AAVHSC16 significantly reduce liver tropism and maintain broad distribution to periphery and CNS

AAVHSC16 的自然变异显著降低了肝脏趋向性,并保持了对外周和中枢神经系统的广泛分布

阅读:6
作者:Laura J Smith, Lindsay A Schulman, Samantha Smith, Laura Van Lieshout, Carmen M Barnes, Liana Behmoiras, Meghan Scarpitti, Monicah Kivaa, Khanh L Duong, Ludo O Benard, Jeff L Ellsworth, Nancy Avila, Deiby Faulkner, April Hayes, Jason Lotterhand, Jose Israel Rivas, Arnold V Sengooba, Alec Tzianabos, 

Abstract

Adeno-associated viruses derived from human hematopoietic stem cells (AAVHSCs) are naturally occurring AAVs. Fifteen AAVHSCs have demonstrated broad biodistribution while displaying differences in transduction. We examine the structure-function relationships of these natural amino acid variations on cellular binding. We demonstrate that AAVHSC16 is the only AAVHSC that does not preferentially bind to terminal galactose. AAVHSC16 contains two unique amino acids, 501I and 706C, compared with other AAVHSCs. Through mutagenesis, we determined that residue 501 contributes to the lack of galactose binding. Structural analysis revealed that residue 501 is in proximity to the galactose binding pocket, hence confirming its functional role in galactose binding. Biodistribution analysis of AAVHSC16 indicated significantly less liver tropism in mice and non-human primates compared with other clade F members, likely associated with overall binding differences observed in vitro. AAVHSC16 maintained robust tropism to other key tissues in the peripheral and central nervous systems after intravenous injection, including to the brain, heart, and gastrocnemius. Importantly, AAVHSC16 did not induce elevated liver enzyme levels in non-human primates after intravenous injection at high doses. The unique glycan binding and tropism of AAVHSC16 makes this naturally occurring capsid an attractive candidate for therapies requiring less liver tropism while maintaining broad biodistribution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。