Probing the biophysical properties of primary breast tumor-derived fibroblasts

探索原发性乳腺肿瘤衍生成纤维细胞的生物物理特性

阅读:5
作者:Turi A Alcoser, Francois Bordeleau, Shawn P Carey, Marsha C Lampi, Daniel R Kowal, Sahana Somasegar, Sonal Varma, Sandra J Shin, Cynthia A Reinhart-King

Abstract

As cancer progresses, cells must adapt to a new and stiffer environment, which can ultimately alter how normal cells within the tumor behave. In turn, these cells are known to further aid tumor progression. Therefore, there is potentially a unique avenue to better understand metastatic potential through single-cell biophysical assays performed on patient-derived cells. Here, we perform biophysical characterization of primary human fibroblastic cells obtained from mammary carcinoma and normal contralateral tissue. Through a series of tissue dissociation, differential centrifugation and trypsinization steps, we isolate an adherent fibroblastic population viable for biomechanical testing. 2D TFM and 3D migration measurements in a collagen matrix show that fibroblasts obtained from patient tumors generate more traction forces and display improved migration potential than their counterparts from normal tissue. Moreover, through the use of an embedded spheroid model, we confirmed the extracellular matrix (ECM) remodeling behavior of primary cells isolated from carcinoma. Overall, correlating biophysical characterization of normal- and carcinoma-derived samples from individual patient along with patient outcome may become a powerful approach to further our comprehension of metastasis and ultimately design drug targets on a patient-specific basis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。