Alcohol dehydrogenase-1B represses the proliferation, invasion and migration of breast cancer cells by inactivating the mitogen-activated protein kinase signalling pathway

乙醇脱氢酶-1B通过抑制丝裂原活化蛋白激酶信号通路抑制乳腺癌细胞的增殖、侵袭和迁移

阅读:2
作者:C Jiang, R Liu, X Wu

Abstract

Breast cancer (BRCA) is a serious life-threatening cancer, especially triple-negative breast cancer (TNBC). Alcohol dehydrogenase-1B (ADH1B) has recently been revealed to be associated with poor prognosis of BRCA patients. This study identified the exact function of ADH1B on the progression of BRCA and TNBC. ADH1B effect on the prognosis of BRCA and TNBC patients was researched based on online databases and clinical samples. The function of ADH1B on the proliferation, invasion and migration, and growth of BRCA and TNBC cells was investigated by cell counting kit-8, Transwell, and in vivo assays. Western blot was utilized to determine the effect of ADH1B on the mitogen-activated protein kinase (MAPK) signalling pathway activity. As a result, ADH1B was down-regulated in BRCA and TNBC patients and cells, predicting unfavorable prognosis (P<0.05). ADH1B overexpression suppressed the proliferation, invasion and migration, and inactivated the MAPK signalling pathway in BRCA and TNBC cells (P<0.01). ADH1B synergized with Selumetinib (inhibitor of the MAPK signalling pathway) to attenuate the proliferation, invasion and migration of BRCA and TNBC cells (P<0.001). Conversely, Vacquinol-1 (activator of the MAPK signalling pathway) abolished the suppression of ADH1B on the proliferation, invasion and migration of BRCA and TNBC cells (P<0.05). ADH1B suppressed in vivo growth of TNBC cells (P<0.001). Thus, ADH1B may inhibit the proliferation, invasion and migration of BRCA and TNBC cells by inactivating the MAPK signalling pathway. It may be a promising target for the clinical treatment of BRCA and TNBC.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。