Activation of the STING pathway induces peripheral sensitization via neuroinflammation in a rat model of bone cancer pain

在骨癌痛大鼠模型中,STING 通路激活通过神经炎症诱发外周敏化

阅读:6
作者:Yuxin Zhang #, Wei Wang #, Zhihao Gong, Yuan Peng, Xin Li, Zuojing Zhang, Xiaoxuan Zhang, Xingji You, Jingxiang Wu

Background

Neuroinflammation in the peripheral nervous system has been linked to cancer metastasis-induced bone pain. The stimulator of interferon genes (STING), an innate immune sensor for cytosolic DNA, plays an important role in inflammation and cancer metastasis and is reported to be a critical regulator of nociception. Here, we examined the role of STING in primary nociceptive neurons and chronic pain to determine if it could be a new target for treating bone cancer pain (BCP).

Conclusion

We provide evidence that STING pathway activation leads to neuroinflammation and peripheral sensitization. Pharmacological blockade of STING may be a promising novel strategy for preventing BCP.

Methods

Walker 256 cancer cells were injected intratibially to induce bone cancer pain in rats. STING and its downstream inflammatory factors in dorsal root ganglia (DRG) were detected using western blotting and immunofluorescent staining. Transmission electron microscopy and the BCL2-associated X (Bax) expression were used to detect the mitochondrial stress in DRG neurons. C-176, a specific inhibitor of STING, was used to block STING activation and to test the pain behavior.

Results

Mechanical hyperalgesia and spontaneous pain were observed in BCP rats, accompanied by the upregulation of the STING expression in the ipsilateral L4-5 DRG neurons which showed significant mitochondrion stress. The STING/TANK-binding kinase 1 (TBK1)/nuclear factor-kappa B (NF-κB) pathway activation was observed in the DRGs of BCP rats as well as increased IL-1β, IL-6, and TNF-α expression. C-176 alleviated bone cancer pain and reduced the STING and its downstream inflammatory pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。