Templated Assembly of Collagen Fibers Directs Cell Growth in 2D and 3D

胶原纤维的模板组装指导细胞在二维和三维中的生长

阅读:4
作者:G Y Liu, R Agarwal, K R Ko, M Ruthven, H T Sarhan, J P Frampton

Abstract

Collagen is widely used in tissue engineering and regenerative medicine, with many examples of collagen-based biomaterials emerging in recent years. While there are numerous methods available for forming collagen scaffolds from isolated collagen, existing biomaterial processing techniques are unable to efficiently align collagen at the microstructural level, which is important for providing appropriate cell recognition and mechanical properties. Although some attention has shifted to development of fiber-based collagen biomaterials, existing techniques for producing and aligning collagen fibers are not appropriate for large-scale fiber manufacturing. Here, we report a novel biomaterial fabrication approach capable of efficiently generating collagen fibers of appropriate sizes using a viscous solution of dextran as a dissolvable template. We demonstrate that myoblasts readily attach and align along 2D collagen fiber networks created by this process. Furthermore, encapsulation of collagen fibers with myoblasts into non-cell-adherent hydrogels promotes aligned growth of cells and supports their differentiation. The ease-of-production and versatility of this technique will support future development of advanced in vitro tissue models and materials for regenerative medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。