Does Oxidative Stress Along with Dysbiosis Participate in the Pathogenesis of Asthma in the Obese?

氧化应激和菌群失调是否参与肥胖哮喘的发病机制?

阅读:8
作者:Paulina Kleniewska, Rafał Pawliczak

Abstract

The most important environmental factor that can play a key role in the development of asthma in the obese is overproduction of reactive oxygen species (ROS). The aim of the study was to examine changes in the concentration of oxidative stress parameters in the lungs, bronchoalveolar lavage (BAL) fluid and blood of mice in models of asthma or/and obesity caused by high-fat diet (HFD). The concentrations of 4-HNE and isoprostanes in the lungs of the animals were measured. BAL fluid levels of hydrogen peroxide were marked. Additionally, thiobarbituric acid reactive substances (TBARS) and ferric reducing ability of plasma (FRAP) were used as biomarkers of oxidative stress in the blood. Administration of lipoic acid (LA), a probiotic with standard-fat diet (SFD, 10% fat) and low-fat diet (LFD, 5% fat) significantly decreased the concentration of 4-HNE as compared to the OVA (ovalbumin) + HFD group (p < 0.05). Treatment with low-fat diet or LFD in combination with apocynin insignificantly decreased H2O2 values as compared to the OVA + HFD group. Supplementation of probiotic with SFD and LFD significantly decreased the concentration of TBARS as compared to the OVA + SFD and saline + HDF groups (p < 0.05). Significantly lower concentrations of TBARS were also observed in the LA plus LFD group (p < 0.05) as compared to the OVA + HFD group. Low-fat diet with probiotic significantly increased the concentration of FRAP as compared to the obese mice (p = 0.017). Treatment with LFD in combination with LA significantly increased FRAP values as compared to the obese and obese asthmatic mice (p < 0.001).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。