Embelin attenuates adipogenesis and lipogenesis through activating canonical Wnt signaling and inhibits high-fat diet-induced obesity

Embelin 通过激活经典 Wnt 信号减弱脂肪生成和脂肪生成,并抑制高脂饮食引起的肥胖

阅读:6
作者:Y Gao, J Li, X Xu, S Wang, Y Yang, J Zhou, L Zhang, F Zheng, X Li, B Wang

Background

Recent studies suggest that Embelin, a natural plant extract might have the potential to prevent body weight gain in rats. However, the mechanisms involved remain to be elucidated.

Conclusions

The present work provides evidences that Embelin is effective in inhibiting adipogenesis and lipogenesis in vitro and the mechanisms may involve canonical Wnt signaling. Embelin has the potential to prevent body weight gain and fat accumulation, and to improve obesity-related glucose tolerance impairment and insulin resistance in the HFD-fed mice.

Methods

Effects of Embelin on adipocyte differentiation and lipogenesis were studied in murine ST2 stromal cells and C3H10T1/2 mesenchymal cells. The mechanisms through which Embelin regulates adipogenic differentiation and lipogenesis were explored. The in vivo anti-obesity effects of Embelin in high-fat diet (HFD)-induced obesity mice and possible transcriptional impact were investigated.

Results

Embelin treatment suppressed ST2 and C3H10T1/2 cells to proliferate, and differentiate into mature adipocytes, along with the inhibition of adipogenic factors peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein-α, adipocyte protein 2 and adipsin. Embelin treatment also decreased the expression levels of lipogenic factors sterol regulatory element-binding protein 1, fatty acid synthase, acetyl-CoA carboxylase 1 and stearoyl-Coenzyme A desaturase 1. Embelin promoted the translocation of β-catenin from the cytoplasm into the nucleus in C3H10T1/2. The nuclear protein levels of β-catenin and TCF-4 were increased following Embelin treatment. Furthermore, Dickkopf-1 (Dkk1) expression was downregulated by Embelin, and overexpression of Dkk1 in C3H10T1/2 reversed the inhibition of adipogenesis and lipogenesis by Embelin. In vivo studies showed that Embelin treatment reduced the gain of body weight and fat, decreased the serum level of triglycerides, free fatty acid and total cholesterol, and improved glucose tolerance and insulin resistance in HFD-fed mice. Moreover, Embelin blocked induction of adipogenic and lipogenic factors and Dkk1 in adipose tissue in HFD-fed mice. Conclusions: The present work provides evidences that Embelin is effective in inhibiting adipogenesis and lipogenesis in vitro and the mechanisms may involve canonical Wnt signaling. Embelin has the potential to prevent body weight gain and fat accumulation, and to improve obesity-related glucose tolerance impairment and insulin resistance in the HFD-fed mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。