Nonlocal Effects and Slip Heat Flow in Nanolayers

纳米层中的非局部效应和滑移热流

阅读:6
作者:Chuan-Yong Zhu, Wei You, Zeng-Yao Li

Abstract

Guyer-Krumhansl (G-K) equation is a promising macroscopic model to explore heat transport in nanoscale. In the present work, a new nonlocal characteristic length is proposed by considering the effects of heat carriers-boundaries interactions to modify the nonlocal term in G-K equation, and a slip heat flux boundary condition is developed based on the local mean free path of heat carriers. Then an analytical solution for heat flux across 2-D nanolayers and an in-plane thermal conductivity model are obtained based on the modified G-K equation and the slip heat flux boundary. The predictions of the present work are in good agreement with our numerical results of direct simulation Monte Carlo (DSMC) for argon gas nanolayer and the available experimental data for silicon thin layers. The results of this work may provide theoretical support for actual applications of G-K equation in predicting the thermal transport properties of nanolayers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。