The naphthalene catabolic protein NahG plays a key role in hexavalent chromium reduction in Pseudomonas brassicacearum LZ-4

萘分解代谢蛋白 NahG 在假单胞菌 LZ-4 中的六价铬还原中起关键作用

阅读:5
作者:Haiying Huang, Xuanyu Tao, Yiming Jiang, Aman Khan, Qi Wu, Xuan Yu, Dan Wu, Yong Chen, Zhenmin Ling, Pu Liu, Xiangkai Li

Abstract

Soil contamination by PAH and heavy metals is a growing problem. Here, we showed that a new isolate, Pseudomonas brassicacearum strain LZ-4, can simultaneously degrade 98% of 6 mM naphthalene and reduce 92.4% of 500 μM hexavalent chromium [Cr (VI)] within 68 h. A draft genome sequence of strain LZ-4 (6,219,082 bp) revealed all the genes in the naphthalene catabolic pathway and some known Cr (VI) reductases. Interestingly, genes encoding naphthalene pathway components were upregulated in the presence of Cr (VI), and Cr (VI) reduction was elevated in the presence of naphthalene. We cloned and expressed these naphthalene catabolic genes and tested for Cr (VI) reduction, and found that NahG reduced 79% of 100 μM Cr (VI) in 5 minutes. Additionally, an nahG deletion mutant lost 52% of its Cr (VI) reduction ability compared to that of the wild-type strain. As nahG encodes a salicylate hydroxylase with flavin adenine dinucleotide (FAD) as a cofactor for electron transfer, Cr (VI) could obtain electrons from NADH through NahG-associated FAD. To the best of our knowledge, this is the first report of a protein involved in a PAH-degradation pathway that can reduce heavy metals, which provides new insights into heavy metal-PAH contamination remediation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。