Oat β-D-glucan ameliorates type II diabetes through TLR4/PI3K/AKT mediated metabolic axis

燕麦β-D-葡聚糖通过TLR4/PI3K/AKT介导的代谢轴改善二型糖尿病

阅读:10
作者:Huiqin Guo, Haili Wu, YanBing Hou, Pengli Hu, Jine Du, Lijia Cao, Ruipeng Yang, Xiushan Dong, Zhuoyu Li

Abstract

Diabetes is one of the major global public health problems. Our previous results found that oat β-D-glucan exhibited ameliorative effects on diabetic mice, but the underlying mechanism is unclear. The present study indicates that oat β-D-glucan increased glycogen content, decreased glycogen synthase (GS) phosphorylation and increased hepatic glycogen synthase kinase 3β (GSK3β) phosphorylation for glycogen synthesis via PI3K/AKT/GSK3-mediated GS activation. Moreover, oat β-D-glucan inhibited gluconeogenesis through the PI3K/AKT/Foxo1-mediated phosphoenolpyruvate carboxykinase (PEPCK) decrease. In addition, oat β-D-glucan enhanced glucose catabolism through elevated protein levels of COQ9, UQCRC2, COXIV and ATP5F complexes involved in oxidative phosphorylation, as well as that of TFAM, a key regulator of mitochondrial gene expression. Importantly, our results showed that oat β-D-glucan maintained hepatic glucose balance via TLR4-mediated intracellular signal. After TLR4 blocking with anti-TLR4 antibody, oat β-D-glucan had almost no effect on high glucose-induced HepG2 cells. These data revealed that oat β-D-glucan maintains glucose balance by regulating the TLR4/PI3K/AKT signal pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。