rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline

rahu 是 Dnmt3c 的突变等位基因,编码小鼠雄性生殖细胞减数分裂和转座子抑制所需的 DNA 甲基转移酶同源物

阅读:5
作者:Devanshi Jain, Cem Meydan, Julian Lange, Corentin Claeys Bouuaert, Nathalie Lailler, Christopher E Mason, Kathryn V Anderson, Scott Keeney

Abstract

Transcriptional silencing by heritable cytosine-5 methylation is an ancient strategy to repress transposable elements. It was previously thought that mammals possess four DNA methyltransferase paralogs-Dnmt1, Dnmt3a, Dnmt3b and Dnmt3l-that establish and maintain cytosine-5 methylation. Here we identify a fifth paralog, Dnmt3c, that is essential for retrotransposon methylation and repression in the mouse male germline. From a phenotype-based forward genetics screen, we isolated a mutant mouse called 'rahu', which displays severe defects in double-strand-break repair and homologous chromosome synapsis during male meiosis, resulting in sterility. rahu is an allele of a transcription unit (Gm14490, renamed Dnmt3c) that was previously mis-annotated as a Dnmt3-family pseudogene. Dnmt3c encodes a cytosine methyltransferase homolog, and Dnmt3crahu mutants harbor a non-synonymous mutation of a conserved residue within one of its cytosine methyltransferase motifs, similar to a mutation in human DNMT3B observed in patients with immunodeficiency, centromeric instability and facial anomalies syndrome. The rahu mutation lies at a potential dimerization interface and near the potential DNA binding interface, suggesting that it compromises protein-protein and/or protein-DNA interactions required for normal DNMT3C function. Dnmt3crahu mutant males fail to establish normal methylation within LINE and LTR retrotransposon sequences in the germline and accumulate higher levels of transposon-derived transcripts and proteins, particularly from distinct L1 and ERVK retrotransposon families. Phylogenetic analysis indicates that Dnmt3c arose during rodent evolution by tandem duplication of Dnmt3b, after the divergence of the Dipodoidea and Muroidea superfamilies. These findings provide insight into the evolutionary dynamics and functional specialization of the transposon suppression machinery critical for mammalian sexual reproduction and epigenetic regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。