MEX3C regulates lipid metabolism to promote bladder tumorigenesis through JNK pathway

MEX3C通过JNK通路调控脂质代谢促进膀胱肿瘤发生

阅读:6
作者:Haichao Chao, Leihong Deng, Fanghua Xu, Zhaojun Yu, Xiangda Xu, Jianbiao Huang, Tao Zeng

Conclusion

Here we identified MEX3C as a new oncogene to promote bladder tumorigenesis by regulating lipid metabolism through Mitogen-activated protein kinase/c-Jun N-terminal kinase (MAPK/JNK) pathway. These findings suggest a new role of MEX3C in promoting BC tumorigenesis and provide a novel biomarker or molecular target for diagnosis or treating BC.

Methods

The Cancer Genome Atlas (TCGA) and Oncomine databases were jointly used to analyze the expression of MEX3C in BC and its correlation with the clinicopathological features, while real-time PCR and immunohistochemistry analysis were used to verify the predicted

Purpose

Bladder cancer (BC) is the most common urinary cancer among men with a high rate of deaths despite the improved medical technology and treatment. Recent evidence demonstrated that Mex-3 RNA-Binding Family Member C (MEX3C) plays various roles in different biological activities, but its molecular mechanisms underlying the pathogenesis of BC remain unclear yet. The aim of this research was to explore the expression patterns of MEX3C and its biological functions in human BC. Materials and

Results

MEX3C was highly expressed in BC tissues and cells compared with their normal counterparts, and its expression was positively correlated with the clinicopathological features, especially the invasiveness phenotype. Overexpression of MEX3C accumulated lipid droplets and promoted cell adhesion, invasion and migration. We further demonstrated that MEX3C regulated lipid metabolism and promoted tumor development and progression through activation of JNK signaling and upregulating the JNK downstream protein levels of sterol regulatory element-binding proteins-1, fatty acid synthase and acetyl-CoA carboxylase-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。