Conclusions
These results demonstrate that human chondrocytes express both the receptor ChemR23 and the ligand chemerin. Chemerin(21-157) stimulation engaged signal-transduction pathways that further promoted inflammatory signalling in chondrocytes, as judged by an enhanced secretion of cytokines and metalloproteases. Taken together, the previously reported chemotaxis and the present findings suggest that the receptor and its ligand may play pivotal roles in joint inflammation.
Methods
Tissue sections were taken from human knee joints and labelled with antibodies towards chemerin and ChemR23. Chondrocytes from cartilage tissue were isolated, cultured and assessed for chemerin and ChemR23 expression by PCR and immunolabelling. Receptor activation and intracellular signalling were studied by assessment of phosphorylated mitogen activated protein kinases (MAPKs) and phosphorylated Akt after stimulating cells with recombinant chemerin(21-157). Biological effects of chemerin(21-157) were investigated by measuring secretion of pro-inflammatory cytokines and metalloproteases in cell supernatants.
Results
Both serially cultured human articular chondrocytes and resident cells in native cartilage expressed chemerin and ChemR23. Stimulating cells with chemerin(21-157) resulted in phosphorylation of p44/p42 MAPKs (ERK 1/2) and Akt (Ser 473). Also, significantly enhanced levels of the pro-inflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and the matrix metalloproteases MMP-1, MMP-2, MMP-3, MMP-8 and MMP-13 were detected. Conclusions: These results demonstrate that human chondrocytes express both the receptor ChemR23 and the ligand chemerin. Chemerin(21-157) stimulation engaged signal-transduction pathways that further promoted inflammatory signalling in chondrocytes, as judged by an enhanced secretion of cytokines and metalloproteases. Taken together, the previously reported chemotaxis and the present findings suggest that the receptor and its ligand may play pivotal roles in joint inflammation.
