Gut microbiota mediated inflammation, neuroendocrine and neurotrophic functions involved in the antidepressant-like effects of diosgenin in chronic restraint stress

肠道微生物群介导的炎症、神经内分泌和神经营养功能与薯蓣皂苷在慢性束缚应激中发挥的抗抑郁样作用有关

阅读:6
作者:Jun-Ji Cui, Ze-Yun Huang, Yi-Hang Xie, Jun-Bin Wu, Guang-Hui Xu, Cheng-Fu Li, Man-Man Zhang, Li-Tao Yi

Background

Diosgenin is a well-known steroid saponin possessing neuroprotective activities. However, it is unknown whether diosgenin could alleviate depression-like symptoms.

Conclusions

The present study shows that diosgenin exerts the antidepressant activity, which is associated with the enhancement of neurotrophic function and the inhibition of inflammatory and neuroendocrine activities via the regulation of gut microbiota.

Methods

The antidepressant-like effect of diosgenin was investigated in mice induced by chronic restraint stress. The effects of diosgenin on behaviors, inflammation, neuroendocrine, neurotrophic function, and gut microbiota were evaluated.

Results

The results showed that diosgenin alleviated the depressive-like behaviors in mice. In addition, diosgenin was found to reduce serum concentrations of proinflammatory cytokines and the activity of the hypothalamic-pituitary-adrenal (HPA) axis. Besides, diosgenin could activate hippocampal brain-derived neurotrophic factor (BDNF)/TrkB/ERK/CREB signaling pathway and improve the expression of postsynaptic protein PSD95. Meanwhile, the neurogenesis which was inhibited by chronic restraint stress, was totally reversed by diosgenin. Moreover, diosgenin increased the abundance of phylum Firmicutes and the genus Lactobacillus in stressed mice. The results further showed that diosgenin caused a strong correlation between gut microbiota composition and inflammation, the HPA axis activity, or hippocampus neurotrophic function. Limitations: Only male mice were used for evaluation in the present study, which limits the understanding of effects of diosgenin on the both sexes. In addition, the results only indicate microbiota at the phylum or genus mediate the regulation of neuroinflammation, neuroendocrine, and neurotrophic function, but does not elucidate how microbiota modulate the systems via their primary or secondary metabolites. Conclusions: The present study shows that diosgenin exerts the antidepressant activity, which is associated with the enhancement of neurotrophic function and the inhibition of inflammatory and neuroendocrine activities via the regulation of gut microbiota.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。