Metabolic remodeling contributes towards an immune-suppressive phenotype in glioblastoma

代谢重塑导致胶质母细胞瘤出现免疫抑制表型

阅读:5
作者:Pravin Kesarwani, Antony Prabhu, Shiva Kant, Prakash Chinnaiyan

Abstract

Glioblastoma (GBM) is one of the most aggressive tumors. Numerous studies in the field of immunotherapy have focused their efforts on identifying various pathways linked with tumor-induced immunosuppression. Recent research has demonstrated that metabolic reprogramming in a tumor can contribute towards immune tolerance. To begin to understand the interface between metabolic remodeling and the immune-suppressive state in GBM, we performed a focused, integrative analysis coupling metabolomics with gene-expression profiling in patient-derived GBM (n = 80) and compared them to low-grade astrocytoma (LGA; n = 28). Metabolic intermediates of tryptophan, arginine, prostaglandin, and adenosine emerged as immuno-metabolic nodes in GBM specific to the mesenchymal and classical molecular subtypes of GBM. Integrative analyses emphasized the importance of downstream metabolism of several of these metabolic pathways in GBM. Using CIBERSORT to analyze immune components from the transcriptional profiles of individual tumors, we demonstrated that tryptophan and adenosine metabolism resulted in an accumulation of Tregs and M2 macrophages, respectively, and was recapitulated in mouse models. Furthermore, we extended these findings to preclinical models to determine their potential utility in defining the biologic and/or immunologic consequences of the identified metabolic programs. Collectively, through integrative analysis, we uncovered multifaceted ways by which metabolic reprogramming may contribute towards immune tolerance in GBM, providing the framework for further investigations designed to determine the specific immunologic consequence of these metabolic programs and their therapeutic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。