Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted

间充质干细胞的共封装和共移植可减少囊周纤维化,并改善异体移植时封装胰岛的存活率和功能

阅读:6
作者:Vijayaganapathy Vaithilingam, Margaret D M Evans, Denise M Lewy, Penelope A Bean, Sumeet Bal, Bernard E Tuch

Abstract

Pericapsular fibrotic overgrowth (PFO) is associated with poor survival of encapsulated islets. A strategy to combat PFO is the use of mesenchymal stem cells (MSC). MSC have anti-inflammatory properties and their potential can be enhanced by stimulation with proinflammatory cytokines. This study investigated whether co-encapsulation or co-transplantation of MSC with encapsulated islets would reduce PFO and improve graft survival. Stimulating MSC with a cytokine cocktail of IFN-γ and TNF-α enhanced their immunosuppressive potential by increasing nitric oxide production and secreting higher levels of immunomodulatory cytokines. In vitro, co-encapsulation with MSC did not affect islet viability but significantly enhanced glucose-induced insulin secretion. In vivo, normoglycemia was achieved in 100% mice receiving islets co-encapsulated with stimulated MSC as opposed to 71.4% receiving unstimulated MSC and only 9.1% receiving encapsulated islets alone. Microcapsules retrieved from both unstimulated and stimulated MSC groups had significantly less PFO with improved islet viability and function compared to encapsulated islets alone. Levels of peritoneal immunomodulatory cytokines IL-4, IL-6, IL-10 and G-CSF were significantly higher in MSC co-encapsulated groups. Similar results were obtained when encapsulated islets and MSC were co-transplanted. In summary, co-encapsulation or co-transplantation of MSC with encapsulated islets reduced PFO and improved the functional outcome of allotransplants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。