Multi-mode humidity sensing with water-soluble copper phthalocyanine for increased sensitivity and dynamic range

采用水溶性铜酞菁的多模式湿度传感,可提高灵敏度和动态范围

阅读:5
作者:Eric S Muckley, Christopher B Jacobs, Keith Vidal, Nickolay V Lavrik, Bobby G Sumpter, Ilia N Ivanov

Abstract

Aqueous solubility of copper phthalocyanine-3,4',4″,4″'-tetrasulfonic acid tetrasodium salt (CuPcTs) enables fabrication of flexible electronic devices by low cost inkjet printing. We (1) investigate water adsorption kinetics on CuPcTs for better understanding the effects of relative humidity (RH) on hydrophilic phthalocyanines, and (2) assess CuPcTs as a humidity-sensing material. Reaction models show that H2O undergoes 2-site adsorption which can be represented by a pair of sequentially-occurring pseudo-first order reactions. Using high frequency (300-700 THz) and low frequency (1-8 MHz) dielectric spectroscopy combined with gravimetric measurements and principal component analysis, we observe that significant opto-electrical changes in CuPcTs occur at RH ≈ 60%. The results suggest that rapid H2O adsorption takes place at hydrophilic sulfonyl/salt groups on domain surfaces at low RH, while slow adsorption and diffusion of H2O into CuPcTs crystallites leads to a mixed CuPcTs-H2O phase at RH > 60%, resulting in high frequency dielectric screening of the film by water and dissociation of Na+ from CuPc(SO3-)4 ions. The CuPcTs-H2O interaction can be tracked using a combination of gravimetric, optical, and electrical sensing modes, enabling accurate ( ± 2.5%) sensing in the ~0-95% RH range with a detection limit of less than 0.1% RH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。