Differential developmental toxicity of naphthoic acid isomers in medaka (Oryzias latipes) embryos

萘甲酸异构体对青鳉(Oryzias latipes)胚胎的差异发育毒性

阅读:6
作者:Michael W Carney, Kyle Erwin, Ron Hardman, Bonny Yuen, David C Volz, David E Hinton, Seth W Kullman

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are widespread persistent pollutants that readily undergo biotic and abiotic conversion to numerous transformation products in rivers, lakes and estuarine sediments. Here we characterize the developmental toxicity of four PAH transformation products each structural isomers of hydroxynaphthoic acid: 1H2NA, 2H1NA, 2H3NA, and 6H2NA. Medaka fish (Oryzias latipes) embryos and eleutheroembryos were used to determine toxicity. A 96-well micro-plate format was used to establish a robust, statistically significant platform for assessment of early life stages. Individual naphthoic acid isomers demonstrated a rank order of toxicity with 1H2NA>2H1NA>2H3NA>6H2NA being more toxic. Abnormalities of circulatory system were most pronounced including pericardial edema and tube heart. To determine if HNA isomers were AhR ligands, spatial-temporal expression and activity of CYP1A was measured via in vivo EROD assessments. qPCR measurement of CYP1A induction proved different between isomers dosed at respective concentrations affecting 50% of exposed individuals (EC50s). In vitro, all ANH isomers transactivated mouse AhR using a medaka CYP1A promoter specific reporter assay. Circulatory abnormalities followed P450 induction and response was consistent with PAH toxicity. A 96-well micro-plates proved suitable as exposure chambers and provided statistically sound evaluations as well as efficient toxicity screens. Our results demonstrate the use of medaka embryos for toxicity analysis thereby achieving REACH objectives for the reduction of adult animal testing in toxicity evaluations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。