The Mosaic Mutants of Cucumber: A Method to Produce Knock-Downs of Mitochondrial Transcripts

黄瓜花叶突变体:一种产生线粒体转录本敲除的方法

阅读:5
作者:Angel R Del Valle-Echevarria, Agnieszka Kiełkowska, Grzegorz Bartoszewski, Michael J Havey

Abstract

Cytoplasmic effects on plant performance are well-documented and result from the intimate interaction between organellar and nuclear gene products. In plants, deletions, mutations, or chimerism of mitochondrial genes are often associated with deleterious phenotypes, as well as economically important traits such as cytoplasmic male sterility used to produce hybrid seed. Presently, genetic analyses of mitochondrial function and nuclear interactions are limited because there is no method to efficiently produce mitochondrial mutants. Cucumber (Cucumis sativus L.) possesses unique attributes useful for organellar genetics, including differential transmission of the three plant genomes (maternal for plastid, paternal for mitochondrial, and bi-parental for nuclear), a relatively large mitochondrial DNA in which recombination among repetitive motifs produces rearrangements, and the existence of strongly mosaic (MSC) paternally transmitted phenotypes that appear after passage of wild-type plants through cell cultures and possess unique rearrangements in the mitochondrial DNA. We sequenced the mitochondrial DNA from three independently produced MSC lines and revealed under-represented regions and reduced transcription of mitochondrial genes carried in these regions relative to the wild-type parental line. Mass spectrometry and Western blots did not corroborate transcriptional differences in the mitochondrial proteome of the MSC mutant lines, indicating that post-transcriptional events, such as protein longevity, may compensate for reduced transcription in MSC mitochondria. Our results support cucumber as a model system to produce transcriptional "knock-downs" of mitochondrial genes useful to study mitochondrial responses and nuclear interactions important for plant performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。