Calsyntenin-1 Promotes Doxorubicin-induced Dilated Cardiomyopathy in Rats

Calsyntenin-1 促进大鼠阿霉素诱发的扩张型心肌病

阅读:9
作者:Mingxiang Zhu #, Yibing Chen #, Liting Cheng, Xin Li, Yanying Shen, Ge Guo, Xiang Xu, Hanlu Li, Hao Yang, Chunlei Liu, Kunlun He

Conclusion

Our findings demonstrated that CLSTN1 promotes the pathogenesis of doxorubicin-induced DCM. CLSTN1 could be a therapeutic target to prevent the development of doxorubicin-induced DCM.

Methods

CLSTN1 expression in doxorubicin-induced DCM rats and H9c2 cells was determined using western blotting. To further explore the functions of CLSTN1, a cardiac-specific CLSTN1 overexpression rat model was constructed. The rats were subjected to analysis using echocardiographic, hemodynamic, and electrocardiographic parameters. Potential downstream molecules in CLSTN1 overexpression heart tissue were investigated using proteomics and western blotting. Finally, a knockdown of CLSTN1 was constructed to investigate the rescue function on doxorubicin-induced cell toxicity.

Purpose

Doxorubicin is an important cancer chemotherapeutic agent with severe cardiotoxic effects that eventually lead to dilated cardiomyopathy (DCM). Calsyntenin-1(CLSTN1) plays a critical role in the nervous system, but its relevance in cardiovascular diseases is unknown. We investigated the significance of CLSTN1 in doxorubicin-induced DCM.

Results

CLSTN1 protein expression increased drastically in doxorubicin-induced DCM rats and H9c2 cells. Under doxorubicin treatment, CLSTN1 protein-specific overexpression in the heart muscle promoted cardiac chamber enlargement and heart failure, while the knockdown of CLSTN1 reduced doxorubicin-induced cardiomyocyte toxicity in vitro. At the mechanistic level, overexpression of CLSTN1 downregulated SERCA2 expression and increased the phosphorylation levels of PI3K-Akt and CaMK2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。