Degradation of phenylethanoid glycosides in Osmanthus fragrans Lour. flowers and its effect on anti-hypoxia activity

桂花中苯乙烷苷类化合物的降解及其对抗缺氧活性的影响

阅读:5
作者:Fei Zhou, Yajing Zhao, Maiquan Li, Tao Xu, Liuquan Zhang, Baiyi Lu, Xiaodan Wu, Zhiwei Ge

Abstract

This study was aimed at investigating the chemical stability (the thermal, light and pH stability) of phenylethanoid glycosides (PhGs) in Osmanthus fragrans Lour. flowers, identifying the degradation products of acteoside and salidroside (major PhGs in O. fragrans flowers) by UPLC-QTOF-MS and studying the anti-hypoxia activity of PhGs after degradation. The degradation of PhGs followed first-order reaction kinetics, and the rate constant of acteoside (4.3 to 203.4 × 10-3 day-1) was higher than that of salidroside (3.9 to 33.3 × 10-3 day-1) in O. fragrans flowers. Salidroside was mainly hydrolyzed to tyrosol during storage, and the degradation products of acteoside were verbasoside, caffeic acid, isoacteoside, etc. In a model of cobalt chloride (CoCl2)-induced hypoxia in PC12 cells, the anti-hypoxia ability of PhGs decreased after degradation, which resulted from the reduction of PhGs contents. Particularly, caffeic acid exhibited stronger anti-hypoxia ability than acteoside and could slightly increase the anti-hypoxia ability of degraded acteoside. The results revealed that high temperature, high pH and light exposure caused PhGs degradation, and thus the anti-hypoxia ability of PhGs reduced.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。