The effect of intervertebral disc degenerative change on biological characteristics of nucleus pulposus mesenchymal stem cell: an in vitro study in rats

大鼠椎间盘退行性变对髓核间充质干细胞生物学特性影响的体外实验

阅读:6
作者:Yang Liu, Yan Li, Ze-Nan Huang, Ze-Yu Wang, Li-Ping Nan, Feng Wang, Shi-Feng Zhou, Jing-Cheng Wang, Xin-Min Feng, Liang Zhang

Conclusions

N-NPMSC showed significantly higher proliferation rate, better colony forming and stemness maintenance ability, whereas reduced cell apoptosis rate compared with D-NPMSC. HIF-1α-mediated signal pathway may be involved in the regulation of NPMSC proliferation. These findings indicated that degenerative change of IVD should be taken into account when selecting a source of NPMSC for clinical application.

Methods

MSC was isolated from normal and degenerative IVD rat model. Immunophenotype detected by flow cytometric analysis, expression of stemness genes determined by reverse-transcription polymerase chain reaction (RT-PCR) and osteogenic, adipogenic and chondrogenic differentiation were compared between MSC derived from normal IVD (N-NPMSC) and degenerative IVD (D-NPMSC). The biological characteristics including cell proliferation, colony formation, apoptosis, caspase-3 activity and mRNA and protein expressions of hypoxia inducible factor-1α (HIF-1α), glucose transporter 1 (GLUT-1), vascular endothelial growth factor (VEGF), silent information regulator protein 1 (SIRT1) and silent information regulator protein 6 (SIRT6) were compared between N-NPMSC and D-NPMSC.

Purpose

To evaluate the change on biological characteristics of mesenchymal stem cell (MSC) derived from normal and degenerative intervertebral disc (IVD).

Results

Both of N-NPMSC and D-NPMSC highly expressed CD105, CD90 and CD73, and lower expressed CD34 and CD45. There was no significant difference in cell morphology and multipotent differentiation ability between N-NPMSC and D-NPMSC. D-NPMSC showed significantly lower expressions of stemness genes, cell proliferation and colony formation ability. D-NPMSC also exhibited increased cell apoptosis rate and caspase-3 expression, and significantly lower expressions of HIF-1α, GLUT-1, VEGF, SIRT1 and SIRT6 in mRNA and protein levels compared with N-NPMSC. Conclusions: N-NPMSC showed significantly higher proliferation rate, better colony forming and stemness maintenance ability, whereas reduced cell apoptosis rate compared with D-NPMSC. HIF-1α-mediated signal pathway may be involved in the regulation of NPMSC proliferation. These findings indicated that degenerative change of IVD should be taken into account when selecting a source of NPMSC for clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。