MsrB1-regulated GAPDH oxidation plays programmatic roles in shaping metabolic and inflammatory signatures during macrophage activation

MsrB1 调节的 GAPDH 氧化在巨噬细胞活化过程中塑造代谢和炎症特征方面发挥程序性作用

阅读:7
作者:Hyun Jung Yoo, Dong Wook Choi, Yeon Jin Roh, Yoon-Mi Lee, Ji-Hong Lim, Soohak Eo, Ho-Jae Lee, Na Young Kim, Seohyun Kim, Sumin Cho, Gyumin Im, Byung Cheon Lee, Ji Hyung Kim

Abstract

Classically activated pro-inflammatory macrophages are generated from naive macrophages by pro-inflammatory cues that dynamically reprogram their fuel metabolism toward glycolysis. This increases their intracellular reactive oxygen species (ROS) levels, which then activate the transcription and release of pro-inflammatory mediators. Our study on mice that lack methionine sulfoxide reductase (Msr)-B1 shows that the resulting partial loss of protein methionine reduction in pro-inflammatory macrophages creates a unique metabolic signature characterized by altered fuel utilization, including glucose and pyruvate. This change also associates with hyper-inflammation that is at least partly due to sustained oxidation of an exposed methionine residue (M44) on glyceraldehyde 3-phosphate dehydrogenase (GAPDH), thereby inducing GAPDH aggregation, inflammasome activation, and subsequent increased interleukin (IL)-1β secretion. Since MsrB1-knockout mice exhibit increased susceptibility to lipopolysaccharide (LPS)-induced sepsis, the MsrB1-GAPDH axis may be a key molecular mechanism by which protein redox homeostasis controls the metabolic profile of macrophages and thereby regulates their functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。