NMDA receptor ion channel activation detected in vivo with [18F]GE-179 PET after electrical stimulation of rat hippocampus

电刺激大鼠海马后,用 [18F]GE-179 PET 检测体内 NMDA 受体离子通道激活情况

阅读:8
作者:Ali K Vibholm, Anne M Landau, Arne Møller, Jan Jacobsen, Kim Vang, Ole L Munk, Dariusz Orlowski, Jens Ch Sørensen, David J Brooks

Abstract

The positron emission tomography (PET) tracer [18F]GE-179 binds to the phencyclidine (PCP) site in the open N-methyl-D-aspartate receptor ion channel (NMDAR-IC). To demonstrate that PET can visualise increased [18F]GE-179 uptake by active NMDAR-ICs and that this can be blocked by the PCP antagonist S-ketamine, 15 rats had an electrode unilaterally implanted in their ventral hippocampus. Seven rats had no stimulation, five received pulsed 400 µA supra-threshold 60 Hz stimulation alone, and three received intravenous S-ketamine injection prior to stimulation. Six other rats were not implanted. Each rat had a 90 min [18F]GE-179 PET scan. Stimulated rats had simultaneous depth-EEG recordings of induced seizure activity. [18F]GE-179 uptake (volume of distribution, VT) was compared between hemispheres and between groups. Electrical stimulation induced a significant increase in [18F]GE-179 uptake at the electrode site compared to the contralateral hippocampus (mean 22% increase in VT, p = 0.0014) and to non-stimulated comparator groups. Rats injected with S-ketamine prior to stimulation maintained non-stimulated levels of [18F]GE-179 uptake during stimulation. In conclusion, PET visualisation of focal [18F]GE-179 uptake during electrically activated NMDAR-ICs and the demonstration of specificity for PCP sites by blockade with S-ketamine support the in vivo utility of [18F]GE-179 PET as a use-dependent marker of NMDAR-IC activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。