Eco-friendly mixed metal (Mg-Ni) ferrite nanosheets for efficient electrocatalytic water splitting

环保混合金属(Mg-Ni)铁氧体纳米片用于高效电催化水分解

阅读:5
作者:Nyemaga M Malima, Malik Dilshad Khan, Siphamandla C Masikane, Felipe M de Souza, Jonghyun Choi, Ram K Gupta, Neerish Revaprasadu

Abstract

Eco-friendly and cost-effective catalysts with multiple active sites, large surface area, high stability and catalytic activity are highly desired for efficient water splitting as a sustainable green energy source. Within this line, a facile synthetic approach based on solventless thermolysis was employed for the simple and tunable synthesis of Ni1-xMgxFe2O4 (0 ≤ x ≤ 1) nanosheets. The characterization of nanosheets (via p-XRD, EDX, SEM, TEM, HRTEM, and SAED) revealed that the pristine ferrites (NiFe2O4 and MgFe2O4), and their solid solutions maintain the same cubic symmetry throughout the composition regulation. Elucidation of the electrochemical performance of the nanoferrite solid solutions showed that by tuning the local chemical environment of Ni in NiFe2O4 via Mg substitution, the intrinsic catalytic activity was enhanced. Evidently, the optimized Ni0.4Mg0.6Fe2O4 catalyst showed drastically enhanced HER activity with a much lower overpotential of 121 mV compared to the pristine NiFe2O4 catalyst. Moreover, Ni0.2Mg0.8Fe2O4 catalyst exhibited the best OER performance with a low overpotential of 284 mV at 10 mA/cm2 in 1 M KOH. This enhanced electrocatalytic activity could be due to improved electronic conductivity caused by the partial substitution of Ni2+ by Mg2+ in the NiFe2O4 matrix as well as the synergistic effect in the Mg-substituted NiFe2O4. Our results suggest a feasible route for developing earth-abundant metal oxide-based electrocatalysts for future water electrolysis applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。