Three-dimensional encapsulation of adult mouse cardiomyocytes in hydrogels with tunable stiffness

成年小鼠心肌细胞在可调节刚度的水凝胶中的三维封装

阅读:7
作者:Claudia Crocini, Cierra J Walker, Kristi S Anseth, Leslie A Leinwand

Abstract

Numerous diseases, including those of the heart, are characterized by increased stiffness due to excessive deposition of extracellular matrix proteins. Cardiomyocytes continuously adapt their morphology and function to the mechanical changes of their microenvironment. Because traditional cell culture is conducted on substrates that are many orders of magnitude stiffer than any environment encountered by a cardiomyocyte in health or disease, alternate culture systems are necessary to model these processes in vitro. Here, we employ photo-clickable thiol-ene poly(ethylene glycol) (PEG) hydrogels for three-dimensional cell culture of adult mouse cardiomyocytes. PEG hydrogels serve as versatile biocompatible scaffolds, whose stiffness can be precisely tuned to mimic physiological and pathological microenvironments. Compared to traditional culture, adult cardiomyocytes encapsulated in PEG hydrogels exhibited longer survival and preserved sarcomeric and T-tubular architecture. Culture in PEG hydrogels of varying stiffnesses regulated the subcellular localization of the mechanosensitive transcription factor, YAP, in adult cardiomyocytes, indicating PEG hydrogels offer a versatile platform to study the role of mechanical cues in cardiomyocyte biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。