Histone demethylase KDM4B accelerates the progression of glioblastoma via the epigenetic regulation of MYC stability

组蛋白去甲基化酶 KDM4B 通过表观遗传调控 MYC 稳定性加速胶质母细胞瘤的进展

阅读:3
作者:Zhongze Wang #, Huarui Cai #, Zekun Li, Wei Sun, Erhu Zhao, Hongjuan Cui

Background

Glioblastoma (GBM) is the most malignant and invasive human brain tumor. Histone demethylase 4B (KDM4B) is abnormally expressed in GBM, but the molecular mechanisms by which KDM4B affects the malignant tumor progression are not well defined.

Conclusions

Our study has uncovered a KDM4B-dependent epigenetic mechanism in the control of tumor progression, providing a rationale for utilizing KDM4B as a promising therapeutic target for the treatment of MYC-amplified GBM.

Methods

GBM cell lines and xenograft tumor samples were subjected to quantitative PCR (qPCR), Western blot, immunohistochemical staining (IHC), as well as ubiquitination, immunoprecipitation (IP), and chromatin immunoprecipitation (ChIP) assays to investigate the role of KDM4B in the progression of GBM.

Results

Here, we report that KDM4B is an epigenetic activator of GBM progression. Abnormal expression of KDM4B is correlated with a poor prognosis in GBM patients. In GBM cell lines, KDM4B silencing significantly inhibited cell survival, proliferation, migration, and invasion, indicating that KDM4B is essential for the anchorage-independent growth and tumorigenic activity of GBM cells. Mechanistically, KDM4B silencing led to downregulation of the oncoprotein MYC and suppressed the expression of cell cycle proteins and epithelial-to-mesenchymal transition (EMT)-related proteins. Furthermore, we found that KDM4B regulates MYC stability through the E3 ligase complex SCFFBXL3+CRY2 and epigenetically activates the transcription of CCNB1 by removing the repressive chromatin mark histone H3 lysine 9 trimethylation (H3K9me3). Finally, we provide evidence that KDM4B epigenetically activates the transcription of miR-181d-5p, which enhances MYC stability. Conclusions: Our study has uncovered a KDM4B-dependent epigenetic mechanism in the control of tumor progression, providing a rationale for utilizing KDM4B as a promising therapeutic target for the treatment of MYC-amplified GBM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。