Background
Agar is used as a gelling agent that possesses a variety of biological properties; it consists of the polysaccharides agarose and porphyrin. In addition, the monomeric sugars generated after agar hydrolysis can be functionalized for use in biorefineries and biofuel production. The main
Conclusions
To the best of our knowledge, Fe3O4-MNP-treated agar degradation for bioethanol production through process optimization is a simpler, easier, and novel method for commercialization.
Results
Fe3O4-MNP-treated (Fe3O4-MNPs, 1 g/L) agar exhibited 0.903 g/L of reducing sugar, which was 21-fold higher than that of the control (without Fe3O4-MNP-treated). Approximately 0.0181% and 0.0042% of ethanol from 1% of agar was achieved using Saccharomyces cerevisiae and Escherichia coli, respectively, after process optimization. Furthermore, different analytical techniques (FTIR, SEM, TEM, EDS, XRD, and TGA) were applied to validate the efficiency of Fe3O4-MNPs in agar degradation. Conclusions: To the best of our knowledge, Fe3O4-MNP-treated agar degradation for bioethanol production through process optimization is a simpler, easier, and novel method for commercialization.
