Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: involvement of NFAT5

视网膜色素上皮细胞中水通道蛋白 5 和 VEGF 高渗诱导的调节:NFAT5 的参与

阅读:9
作者:Margrit Hollborn, Stefanie Vogler, Andreas Reichenbach, Peter Wiedemann, Andreas Bringmann, Leon Kohen

Conclusions

Hyperosmolarity induces the gene transcription of AQP5, AQP8, and VEGF, as well as the secretion of VEGF from RPE cells. The data suggest that high salt intake resulting in osmotic stress may aggravate neovascular retinal diseases and edema via the stimulation of VEGF production in RPE. The downregulation of AQP5 under hypoxic conditions may prevent the resolution of edema.

Methods

Human RPE cells obtained within 48 h of donor death were prepared and cultured. Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Alterations in gene expression and protein secretion were determined with real-time RT-PCR and ELISA, respectively. The levels of signaling proteins and nuclear factor of activated T cell 5 (NFAT5) were determined by western blotting. DNA binding of NFAT5 was determined with EMSA. NFAT5 was knocked down with siRNA.

Purpose

High intake of dietary salt increases extracellular osmolarity, which

Results

Extracellular hyperosmolarity stimulated VEGF gene transcription and the secretion of VEGF protein. Hyperosmolarity also increased the gene expression of AQP5 and AQP8, induced the phosphorylation of p38 MAPK and ERK1/2, increased the expression of HIF-1α and NFAT5, and induced the DNA binding of NFAT5. The hyperosmotic expression of VEGF was dependent on the activation of p38 MAPK, ERK1/2, JNK, PI3K, HIF-1, and NFAT5. The hyperosmotic induction of AQP5 was in part dependent on the activation of p38 MAPK, ERK1/2, NF-κB, and NFAT5. Triamcinolone acetonide inhibited the hyperosmotic expression of VEGF but not AQP5. The expression of AQP5 was decreased by hypoosmolarity, serum, and hypoxia. Conclusions: Hyperosmolarity induces the gene transcription of AQP5, AQP8, and VEGF, as well as the secretion of VEGF from RPE cells. The data suggest that high salt intake resulting in osmotic stress may aggravate neovascular retinal diseases and edema via the stimulation of VEGF production in RPE. The downregulation of AQP5 under hypoxic conditions may prevent the resolution of edema.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。