DC2 and KCP2 mediate the interaction between the oligosaccharyltransferase and the ER translocon

DC2 和 KCP2 介导寡糖基转移酶与 ER 转运蛋白之间的相互作用

阅读:8
作者:Shiteshu Shrimal, Natalia A Cherepanova, Reid Gilmore

Abstract

In metazoan organisms, the STT3A isoform of the oligosaccharyltransferase is localized adjacent to the protein translocation channel to catalyze co-translational N-linked glycosylation of proteins in the endoplasmic reticulum. The mechanism responsible for the interaction between the STT3A complex and the translocation channel has not been addressed. Using genetically modified human cells that are deficient in DC2 or KCP2 proteins, we show that loss of DC2 causes a defect in co-translational N-glycosylation of proteins that mimics an STT3A-/- phenotype. Biochemical analysis showed that DC2 and KCP2 are responsible for mediating the interaction between the protein translocation channel and the STT3A complex. Importantly, DC2- and KCP2-deficient STT3A complexes are stable and enzymatically active. Deletion mutagenesis revealed that a conserved motif in the C-terminal tail of DC2 is critical for assembly into the STT3A complex, whereas the lumenal loop and the N-terminal cytoplasmic segment are necessary for the functional interaction between the STT3A and Sec61 complexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。