Stearoyl-CoA Desaturase 1 Activity Determines the Maintenance of DNMT1-Mediated DNA Methylation Patterns in Pancreatic β-Cells

硬脂酰辅酶 A 去饱和酶 1 活性决定胰腺 β 细胞中 DNMT1 介导的 DNA 甲基化模式的维持

阅读:6
作者:Aneta M Dobosz, Justyna Janikiewicz, Anna M Borkowska, Anna Dziewulska, Ewelina Lipiec, Pawel Dobrzyn, Wojciech M Kwiatek, Agnieszka Dobrzyn

Abstract

Metabolic stress, such as lipotoxicity, affects the DNA methylation profile in pancreatic β-cells and thus contributes to β-cell failure and the progression of type 2 diabetes (T2D). Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme that is involved in monounsaturated fatty acid synthesis, which protects pancreatic β-cells against lipotoxicity. The present study found that SCD1 is also required for the establishment and maintenance of DNA methylation patterns in β-cells. We showed that SCD1 inhibition/deficiency caused DNA hypomethylation and changed the methyl group distribution within chromosomes in β-cells. Lower levels of DNA methylation in SCD1-deficient β-cells were followed by lower levels of DNA methyltransferase 1 (DNMT1). We also found that the downregulation of SCD1 in pancreatic β-cells led to the activation of adenosine monophosphate-activated protein kinase (AMPK) and an increase in the activity of the NAD-dependent deacetylase sirtuin-1 (SIRT1). Furthermore, the physical association between DNMT1 and SIRT1 stimulated the deacetylation of DNMT1 under conditions of SCD1 inhibition/downregulation, suggesting a mechanism by which SCD1 exerts control over DNMT1. We also found that SCD1-deficient β-cells that were treated with compound c, an inhibitor of AMPK, were characterized by higher levels of both global DNA methylation and DNMT1 protein expression compared with untreated cells. Therefore, we found that activation of the AMPK/SIRT1 signaling pathway mediates the effect of SCD1 inhibition/deficiency on DNA methylation status in pancreatic β-cells. Altogether, these findings suggest that SCD1 is a gatekeeper that protects β-cells against the lipid-derived loss of DNA methylation and provide mechanistic insights into the mechanism by which SCD1 regulates DNA methylation patterns in β-cells and T2D-relevant tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。