Proteomic analysis of hippocampal proteins in acrylamide-exposed Wistar rats

丙烯酰胺暴露的 Wistar 大鼠海马蛋白质的蛋白质组学分析

阅读:10
作者:Daichi Nagashima, Lingyi Zhang, Yuki Kitamura, Sahoko Ichihara, Eri Watanabe, Cai Zong, Yuko Yamano, Toshihiro Sakurai, Shinji Oikawa, Gaku Ichihara

Abstract

Acrylamide has been used industrially and also found in certain foods cooked at high temperatures. Previous reports described acrylamide-related human intoxication who presented with ataxia, memory impairment, and/or illusion. The aim of this study was to characterize the molecular mechanisms of neurotoxicity of acrylamide by analyzing the expression levels of various proteins in the hippocampus of rats exposed to acrylamide. Male Wistar rats were administered acrylamide by gavage at 0, 2, and 20 mg/kg for 1 week or 0, 0.2, 2, and 20 mg/kg for 5 weeks. At the end of the experiment, the hippocampus was dissected out and proteins were extracted for two-dimensional difference gel electrophoresis combined with matrix-assisted laser-desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF/MS). MALDI-TOF/TOF/MS identified significant changes in two proteins in the 1-week and 22 proteins in the 5-week exposure groups. These changes were up-regulation in 9 and down-regulation in 13 proteins in the hippocampus of rats exposed to acrylamide at 20 mg/kg for 5 weeks. PANTHER overrepresentation test based on the GO of biological process showed significant overrepresentation in proteins annotated to nicotinamide nucleotide metabolic process, coenzyme biosynthetic process, pyruvate metabolic process, and carbohydrate metabolic process. The test also showed significant overrepresentation in proteins annotated to creatinine kinase activity for the GO of molecular function as well as myelin sheath, cytoplasmic part, and cell body for the GO of cellular component. Comparison with a previous proteomic study on hippocampal proteins in rats exposed to 1-bromopropane identified triosephosphate isomerase, mitochondrial creatine kinase U-type, creatine kinase β-type and proteasome subunit α type-1 as proteins affected by exposure to acrylamide and 1-bromopropane, suggesting a common mechanism of neurotoxicity for soft electrophiles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。