Chronic asthma and Mesenchymal stem cells: Hyaluronan and airway remodeling

慢性哮喘和间充质干细胞:透明质酸和气道重塑

阅读:3
作者:Benjamin D Goldstein, Mark E Lauer, Arnold I Caplan, Tracey L Bonfield

Background

Previous studies have demonstrated that ovalbumin sensitization promotes chronic asthma phenotype in murine asthma model. Human mesenchymal stem cells (hMSCs) are multipotent cells in vitro that have been shown to decrease inflammation and can reverse airway remodeling when infused into an in vivo chronic asthma model. However, the mechanism by which hMSCs reverse remodeling is still unclear. In this study, we hypothesized that hMSCs influence remodeling by decreasing extracellular matrix (ECM) deposition, more specifically by decreasing collagen I, collagen III, and hyaluronan synthesis.

Conclusion

hMSCs participate in improved outcomes of remodeling by reversing excess collagen deposition and changing hyaluronan levels.

Methods

Chronic asthma phenotype was produced in an in vitro model with 3 T3 murine airway fibroblast cells by stimulating with GM-CSF. Collagen I and collagen III gene expression was investigated using RT-PCR and Taqman techniques. Hyaluronan was evaluated using FACE and Western Blots. The chronic asthma phenotype was produced in vivo in murine model using sensitization with ovalbumin with and without hMSC infusion therapy. ECM deposition (specifically trichrome staining, soluble and insoluble collagen deposition, and hyaluronan production) was evaluated. Image quantification was used to monitor trichrome staining changes.

Results

GM-CSF which induced collagen I and collagen III production was down-regulated with hMSC using co-culture. In the in vivo model, Ovalbumin induced enhanced ECM deposition, soluble and insoluble collagen production, and lung elastance. hMSC infusions decreased ECM deposition as evidenced by decreases in soluble and insoluble collagen production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。