Ferroptosis resistance determines high susceptibility of murine A/J strain to iron-induced renal carcinogenesis

铁死亡抵抗力决定了A/J小鼠品系对铁诱导肾癌的高度易感性

阅读:2
作者:Zhen Cheng ,Shinya Akatsuka ,Guang Hua Li ,Kiyoshi Mori ,Takashi Takahashi ,Shinya Toyokuni

Abstract

Cancer susceptibility is a critical factor in the understanding of carcinogenesis. Intraperitoneal (i.p.) injection of an iron chelate, ferric nitrilotriacetate (Fe-NTA), produces hydroxyl radicals via Fenton reaction to induce ferroptosis in renal proximal tubules. Rats or mice subjected to repeated i.p. injections of Fe-NTA develop renal cell carcinoma (RCC). To elucidate the molecular mechanisms that cause susceptibility to renal carcinogenesis, we first established an inter-strain difference in the susceptibility to Fe-NTA-induced renal carcinogenesis in mice. Based on a previous observation of a low incidence of RCC with this model in C57BL/6J strain mice, we investigated A/J strain mice here, which demonstrated significantly higher susceptibility to Fe-NTA-induced renal carcinogenesis. Homozygous deletion of the Cdkn2a/2b tumor suppressor locus was detected for the first time in A/J strain mice. Focusing on ferroptosis and iron metabolism, we explored the mechanisms involved that lead to the difference in RCC development. We compared the protective responses in the kidney of A/J and C57BL/6J strains after Fe-NTA treatment. After 3-week Fe-NTA treatment, A/J mice maintained higher levels of expression of glutathione peroxidase 4 and xCT (SLC7A11), leading to a lower level of lipid peroxidation. Simultaneously, A/J mice had decreased expression of transferrin receptor and increased expression of ferritin to greater degrees than C57BL/6 mice. After a single Fe-NTA injection, higher levels of oxidative cell damage and cytosolic catalytic Fe(II) were observed in C57BL/6J mice, accompanied by a greater increase in lipocalin-2. Lipocalin-2 deficiency significantly decreased oxidative renal damage. Our results suggest that a genetic trait favoring ferroptosis resistance contributes to high susceptibility to Fe-NTA-induced RCC in A/J strain. Keywords: animal models; ferroptosis; iron; lipocalins; renal cell carcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。