Electrical pulse stimulation: an in vitro exercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study

电脉冲刺激:诱导人类骨骼肌细胞肥大的体外运动模型。概念验证研究

阅读:5
作者:Janelle Tarum, Mattias Folkesson, Philip J Atherton, Fawzi Kadi

Abstract

What is the central question of this study? Is electrical pulse stimulation (EPS) an in vitro exercise model able to elicit the hypertrophy of human muscle cells? What is the main finding and its importance? The addition of a restitution period of 8 h after EPS induces the enlargement of human muscle cells, a major physiological end-point to resistance exercise. This is supported by downregulation of myostatin, a negative regulator of muscle mass, and increased phosphorylated mTOR and 4E-BP1, key factors in the growth cascade. This proof-of-concept study provides a model of physiologically mediated muscle growth, which will be the basis for future studies aiming to depict molecular events governing the hypertrophy of human muscle cells. Electrical pulse stimulation (EPS) of muscle cells has previously been used as an in vitro exercise model. The present study aimed to establish an EPS protocol promoting the hypertrophy of human muscle cells, which represents a major physiological end-point to resistance exercise in humans. We hypothesized that adding a resting period after EPS would be crucial for the occurrence of the morphological change. Myoblasts obtained from human muscle biopsies (n = 5) were differentiated into multinucleated myotubes and exposed to 8 h of EPS consisting of 2 ms pulses at 12 V, with a frequency of 1 Hz. Myotube size was assessed using immunohistochemistry immediately, 4 and 8 h after completed EPS. Gene expression and phosphorylation status of selected markers of hypertrophy were assessed using RT-PCR and Western blotting, respectively. Release of the myokine interleukin-6 in culture medium was measured using enzyme-linked immunosorbent assay. We demonstrated a significant increase (31 ± 14%; P = 0.03) in the size of myotubes when EPS was followed by an 8 h resting period, but not immediately or 4 h after completion of EPS. The response was supported by downregulation (P = 0.04) of the gene expression of myostatin, a negative regulator of muscle mass, and an increase in phosphorylated mTOR (P = 0.03) and 4E-BP1 (P = 0.01), which are important factors in the cellular growth signalling cascade. The present work demonstrates that EPS is an in vitro exercise model promoting the hypertrophy of human muscle cells, recapitulating a major physiological end-point to resistance exercise in human skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。