Conclusions
Baicalin inhibited cerebral ischemia-induced activation of the NFκB/CCL2/CCR2 pathway with multiple target effect. These data promote the therapeutic utilization of baicalin in preventing cerebral ischemia clinically.
Methods
A rat model of middle cerebral artery occlusion (MCAO) was constructed. Sprague-Dawley rats were randomly divided into three groups: control group, ischemic model group, and baicalin 100 mg/kg treatment group respectively. Bederson score and 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining were examined to evaluate the pharmacodynamics of baicalin treatment. Antibody-based array technology, enzyme linked immunosorbent assay (ELISA), western-blot, molecular docking, transcription factor perdiction, hematoxylin and eosin (H&E), and immunofluorescence staining were used to study the regulation of baicalin on inflammatory response after cerebral ischemia in vivo. LPS-induced RAW 264.7 macrophage inflammation model was prepared to observe the anti-inflammatory effect of baicalin in vitro.
Results
Baicalin (100 mg/kg) reduced neurological injury score, cerebral infarction volume, and necrotic cells in MCAO rats. Baicalin inhibited the expression of CCL2, and reduced the phosphorylation levels of p65, IκBα protein and down-regulated level of CCR2. Besides, baicalin could bond to CCR2 directly, which prevented CCL2 from binding to CCR2. Furthermore, baicalin down-regulated the number of monocytes in the peripheral blood and improved the spleen index post-cerebral ischemia. In vitro, baicalin significantly inhibited the secretion of NO, IL6, TNFα, and CCL2 in macrophages and promoted the secretion of IL13, IFNG, and IL1a. Conclusions: Baicalin inhibited cerebral ischemia-induced activation of the NFκB/CCL2/CCR2 pathway with multiple target effect. These data promote the therapeutic utilization of baicalin in preventing cerebral ischemia clinically.
