Anterior cingulate cortex and dorsal hippocampal glutamate receptors mediate generalized fear in female rats

前扣带皮层和背海马谷氨酸受体介导雌性大鼠的广泛性恐惧

阅读:6
作者:Jordan M Adkins, Joseph F Lynch 3rd, Payton Hagerdorn, Monique Esterhuizen, Aaron M Jasnow

Abstract

Exhibiting fear to non-threatening cues or contexts-generalized fear-is a shared characteristic of several anxiety disorders, which afflict women more than men. Female rats generalize contextual fear at a faster rate than males and this is due, in part, to actions of estradiol in the dorsal CA1 hippocampus (dCA1). To understand the mechanisms underlying estradiol's effects on generalization, we infused estradiol into the anterior cingulate cortex (ACC) or ventral CA1 hippocampus (vCA1) of ovariectomized (OVX) female rats. Estradiol acts within the ACC, but not the vCA1, to promote generalized fear. We next examined if AMPA or NMDA receptor antagonists (NBQX, APV) infused into the dCA1 or the ACC of female rats could block generalized fear induced by systemic injections of estradiol. Immediate pre-testing infusions of NBQX or APV into either region eliminated estradiol-induced generalization. Specific blockade of GluN2B receptors with infusions of Ro 25-6981 into the dCA1 or ACC also eliminated generalized fear. Our results suggest that in addition to the dCA1, the ACC is an important locus for the effects of estradiol on fear generalization. Moreover, within these regions, AMPA and NMDA-GluN2B receptors are necessary for estradiol-induced generalization of fear responses, suggesting a critical involvement of glutamatergic transmission. Furthermore, we identified a novel role for GluN2B in mediating the effects of estradiol on generalized fear in female rats. These data potentially implicate GluN2B receptors in more general forms of memory retrieval inaccuracies, and form the foundation for exploration of glutamate receptor pharmacology for treatments of anxiety disorders involving generalization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。