Generation of Clickable Pittsburgh Compound B for the Detection and Capture of β-Amyloid in Alzheimer's Disease Brain

可点击的匹兹堡化合物 B 的生成,用于检测和捕获阿尔茨海默病脑中的 β-淀粉样蛋白

阅读:5
作者:Ian Diner, Jeromy Dooyema, Marla Gearing, Lary C Walker, Nicholas T Seyfried

Abstract

The benzothiazole-aniline derivative Pittsburgh Compound B (PiB) is the prototypical amyloid affinity probe developed for the in vivo positron emission tomography (PET) detection of amyloid beta (Aβ) deposits in Alzheimer's disease (AD). Specific high-affinity binding sites for PiB have been found to vary among AD cases with comparable Aβ load, and they are virtually absent on human-sequence Aβ deposits in animal models, none of which develop the full phenotype of AD. PiB thus could be an informative probe for studying the pathobiology of Aβ, but little is known about the localization of PiB binding at the molecular or structural level. By functionalizing the 6-hydroxy position of PiB with a PEG3 spacer and a terminal alkyne (propargyl) moiety, we have developed a clickable PiB compound that was derivatized with commercially available azide-labeled fluorophores or affinity-tags using copper-catalyzed azide-alkyne cycloaddition reactions, commonly referred to as "click" chemistry. We have determined that both the clickable PiB derivative and its fluorescently labeled conjugate have low nanomolar binding affinities for synthetic Aβ aggregates. Furthermore, the fluorescent-PiB conjugate can effectively bind Aβ aggregates in human AD brain homogenates and tissue sections. By covalently coupling PiB to magnetic beads, Aβ aggregates were also affinity-captured from AD brain extracts. Thus, the clickable PiB derivative described herein can be used to generate a wide variety of covalent conjugates, with applications including the fluorescence detection of Aβ, the ultrastructural localization of PiB binding, and the affinity capture and structural characterization of Aβ and other cofactors from AD brains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。