Effects of KEAP1 Silencing on the Regulation of NRF2 Activity in Neuroendocrine Lung Tumors

KEAP1沉默对肺神经内分泌肿瘤中NRF2活性调节的影响

阅读:4
作者:Angelo Sparaneo, Federico Pio Fabrizio, Annamaria la Torre, Paolo Graziano, Massimo Di Maio, Andrea Fontana, Michele Bisceglia, Antonio Rossi, Stefano Pizzolitto, Giovanna De Maglio, Antonio Tancredi, Franco Grimaldi, Teresa Balsamo, Flavia Centra, Maria Carmina Manzorra, Domenico Trombetta, Angela

Background

The KEAP1/NRF2 pathway has been widely investigated in tumors since it was implicated in cancer cells survival and therapies resistance. In lung tumors the deregulation of this pathway is mainly related to point mutations of KEAP1 and NFE2L2 genes and KEAP1 promoter hypermethylation, but these two genes have been rarely investigated in low/intermediate grade neuroendocrine tumors of the lung.

Conclusions

This is the first study that has described the effects of KEAP1 silencing on the regulation of NRF2 activity in lung carcinoids cells. The epigenetic deregulation of the KEAP1/NRF2 by a KEAP1 promoter hypermethylation system appears to be a frequent event in lung carcinoids.

Methods

The effects of KEAP1 silencing on NRF2 activity was investigated in H720 and H727 carcinoid cell lines and

Results

We demonstrated that in carcinoid cell lines, the KEAP1 silencing induces an upregulation of NRF2 and some of its targets and that there is a direct correlation between KEAP1 methylation and its mRNA levels. A KEAP1 hypermethylation and Loss of Heterozygosity at KEAP1 gene locus was also observed in nearly half of lung carcinoids. Conclusions: This is the first study that has described the effects of KEAP1 silencing on the regulation of NRF2 activity in lung carcinoids cells. The epigenetic deregulation of the KEAP1/NRF2 by a KEAP1 promoter hypermethylation system appears to be a frequent event in lung carcinoids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。