Differential effects of β-arrestin1 and β-arrestin2 on somatostatin receptors in murine AtT-20 corticotroph tumor cells

β-arrestin1 和 β-arrestin2 对小鼠 AtT-20 促皮质素肿瘤细胞中生长抑素受体的不同影响

阅读:4
作者:Kazunori Kageyama, Rie Hagiwara, Kanako Niioka, Shinobu Takayasu, Makoto Daimon

Abstract

Autonomous production of adrenocorticotropic hormone (ACTH) from pituitary corticotroph adenomas is the primary cause of Cushing's disease. Somatostatin receptor, a G protein-coupled receptor (GPCR), types 2 (SSTR2) and 5 (SSTR5) mRNA expression is greater than that of other SSTR subtypes in human corticotroph adenomas. Further, the multiligand SOM230 shows potent effects in decreasing ACTH plasma levels and urinary free cortisol levels in patients with Cushing's disease. We previously showed that both Sstr2 and Sstr5 mRNA levels were unaffected by SOM230 treatment, suggesting that both receptors might not be downregulated by the agonist. Intracellular molecules, such as β-arrestins, modulate ligand activated-receptor responses. In the present study, we determined regulation of β-arrestin1 and β-arrestin2 by SOM230 and dexamethasone in murine AtT-20 corticotroph tumor cells. In addition, we examined the effects of β-arrestin1 and β-arrestin2 on Sstr mRNA and their protein levels. SOM230 treatment increased β-arrestin1 mRNA levels and did not alter β-arrestin2 mRNA levels. SOM230 treatment could induce β-arrestin1 production in corticotroph tumor cells. Dexamethasone treatment decreased β-arrestin2 mRNA levels. β-arrestin2 knockdown increased proopiomelanocortin, and both Sstr2 and Sstr5 mRNA and their protein levels. The β-arrestin2 knockdown-increased proopiomelanocortin mRNA levels were canceled by SOM230 treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。