Effects of microalgae, with or without xylanase supplementation, on serum immunoglobulins, cecal short-chain fatty acids, microbial diversity, and metabolic pathways of broiler chickens

添加或不添加木聚糖酶的微藻对肉鸡血清免疫球蛋白、盲肠短链脂肪酸、微生物多样性和代谢途径的影响

阅读:5
作者:Pravin Mishra, Razib Das, Ajay Chaudhary, Birendra Mishra, Rajesh Jha

Abstract

Modern broilers are highly susceptible to environmental and pathogenic threats, leading to gut disorders and poor nutrient utilization if not managed properly. Nutritional programming using several feedstuffs and coproducts to manage gut health has been studied. This study used microalgae as a functional compound and xylanase enzyme in broilers' diets as a strategy to manage gut health. A total of 162 one-day-old unsexed Cobb 500 broiler chicks were randomly assigned to 1 of the 3 dietary treatments: a) corn-soybean meal-based control diet (CON), b) 3% microalgae (MAG), and c) MAG with xylanase enzyme (MAG+XYN). The chicks were reared for 35 days (d) on a floor pen system maintaining standard environment conditions to evaluate the effects of microalgae, with or without xylanase supplementation, on serum immunoglobulins, cecal short-chain fatty acids (SCFA) production, cecal microbial diversity, and metabolic pathways. No significant differences were found for serum immunoglobulin and cecal SCFA among the treatment groups (P > 0.05). Relative microbial abundance at the genus level showed that MAG and MAG+XYN groups had a diverse microbial community on d 3 and d 35. However, no bacterial genus had a significant difference (P > 0.05) in their relative abundance on d 3, but 16 genera showed significant differences (P < 0.05) in their relative abundance among the dietary treatments on d 35. Most of these bacteria were SCFA-producing bacteria. Moreover, MAG and MAG+XYN-fed broilers had better responses than CON groups for metabolic pathways (D-mannose degradation, pectin degradation I and II, β-1-4-mannan degradation, tetrahydrofolate biosynthesis, glutathione biosynthesis, glutathione-peroxide redox reactions, lactate fermentation to propionate, acetate, and hydrogen, etc.) both on d 3 and d 35. The results suggest that using microalgae, with or without xylanase, had no statistical impact on serum immunoglobulins and cecal SCFA production in broilers. However, an improvement in the cecal microbial diversity and metabolic pathways, which are essential indicators of gut health and nutrient utilization, was observed. Most of the improved metabolic pathways were related to fiber utilization and oxidative stress reduction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。