Characterising the effect of antimalarial drugs on the maturation and clearance of murine blood-stage Plasmodium parasites in vivo

表征抗疟药物对小鼠血液阶段疟原虫体内成熟和清除的影响

阅读:5
作者:David S Khoury, Deborah Cromer, Trish Elliott, Megan S F Soon, Bryce S Thomas, Kylie R James, Shannon E Best, Rosemary A Aogo, Jessica A Engel, Kate H Gartlan, Jasmin Akter, Ismail Sebina, Ashraful Haque, Miles P Davenport

Abstract

The artemisinins are the first-line therapy for severe and uncomplicated malaria, since they cause rapid declines in parasitemia after treatment. Despite this, in vivo mechanisms underlying this rapid decline remain poorly characterised. The overall decline in parasitemia is the net effect of drug inhibition of parasites and host clearance, which competes against any ongoing parasite proliferation. Separating these mechanisms in vivo was not possible through measurements of total parasitemia alone. Therefore, we employed an adoptive transfer approach in which C57BL/6J mice were transfused with Plasmodium berghei ANKA strain-infected, fluorescent red blood cells, and subsequently drug-treated. This approach allowed us to distinguish between the initial drug-treated generation of parasites (Gen0), and their progeny (Gen1). Artesunate efficiently impaired maturation of Gen0 parasites, such that a sufficiently high dose completely arrested maturation after 6h of in vivo exposure. In addition, artesunate-affected parasites were cleared from circulation with a half-life of 6.7h. In vivo cell depletion studies using clodronate liposomes revealed an important role for host phagocytes in the removal of artesunate-affected parasites, particularly ring and trophozoite stages. Finally, we found that a second antimalarial drug, mefloquine, was less effective than artesunate at suppressing parasite maturation and driving host-mediated parasite clearance. Thus, we propose that in vivo artesunate treatment causes rapid decline in parasitemia by arresting parasite maturation and encouraging phagocyte-mediated clearance of parasitised RBCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。