Quantitatively mapping local quality of super-resolution microscopy by rolling Fourier ring correlation

通过滚动傅里叶环相关定量映射超分辨率显微镜的局部质量

阅读:9
作者:Weisong Zhao #, Xiaoshuai Huang #, Jianyu Yang #, Liying Qu, Guohua Qiu, Yue Zhao, Xinwei Wang, Deer Su, Xumin Ding, Heng Mao, Yaming Jiu, Ying Hu, Jiubin Tan, Shiqun Zhao, Leiting Pan, Liangyi Chen, Haoyu Li

Abstract

In fluorescence microscopy, computational algorithms have been developed to suppress noise, enhance contrast, and even enable super-resolution (SR). However, the local quality of the images may vary on multiple scales, and these differences can lead to misconceptions. Current mapping methods fail to finely estimate the local quality, challenging to associate the SR scale content. Here, we develop a rolling Fourier ring correlation (rFRC) method to evaluate the reconstruction uncertainties down to SR scale. To visually pinpoint regions with low reliability, a filtered rFRC is combined with a modified resolution-scaled error map (RSM), offering a comprehensive and concise map for further examination. We demonstrate their performances on various SR imaging modalities, and the resulting quantitative maps enable better SR images integrated from different reconstructions. Overall, we expect that our framework can become a routinely used tool for biologists in assessing their image datasets in general and inspire further advances in the rapidly developing field of computational imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。